
Maths for Computing 

Tutorial 6 
1. Let   is a real number such that . Then prove that .  
 
2. Prove that , where  is the power set of . 
 
3. Prove that there can be no bijection between  and . 
 
4. Prove that set of functions from  to   is uncountable. 
 
5. Give a bijection from  to . 

6. Prove that a finite poset will always have a maximal element.


7. A busy airport sees  takeoffs per day. Prove that there are two planes that must take off 
within a minute of each other. 
 
8. The set  consists of  positive integers, none of which has a prime divisor larger than . Prove 
that  has two elements whose product is the square of an integer.


9. Let  be a -element set of -digit positive integers. Prove that  has two disjoint subsets  and 
 so that the sum of the elements of  is equal to the sum of the elements of .


10. Suppose  girls and  boys are seated around a circular table. Is it true that there is always a 
person both of whose neighbours are boys. Prove it formally or disprove it by giving a counter-
example.


11. Suppose we are given a sequence of  integers  which need not be distinct. Prove 
that there is always a subsequence of consecutive numbers  in the given sequence, 

whose sum  is a multiple of .


12. Let . Prove that if we select any  integers from , then there exists two 
integers, say  and , such that  .


X = {x ∣ x 1 < x < 2} |X | = |R |

|P(ℤ) | = |ℝ | P(ℤ) ℤ

ℤ+ P(ℤ+)

ℤ+ ℤ+

(0,1] (0,1)

1500

M 9 6
M

H 10 2 H A
B A B

51 51

n a1, a2, …, an,
ak, ak+1, …, al

l

∑
i=k

ai n

n ≥ 1 n + 1 {1,2,…,2n}
a b a % b = 0



Tutorial 6


Solution 1

We can prove  using Schröder-Bernstein theorem. That is, we will give an injection from 

 to  and from  to .


Injection from  to :    is . Clearly,   is an injection.


Injection from  to :    is .


Range of    is : Since  is positive for any  , .  Therefore,  .


Also, . Hence, .


 is one-to-one: Let  such that . Then,


                  


                  


                  


                  


                         


                          

                                          (take log on both sides.).


Solution 2

First note that  (using the fact that there is a bijection between  and ) and 

 (using Schröder-Bernstein). Therefore, it is enough to prove , which 
we will do using Schröder-Bernstein. 
 
Injection from  to : Let    be a function from  to  such that when , 

 and when , ,  where   if , else . Clearly,  is an 
injection.
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Injection from  to : Again  has a bijection to  and there in an injection from 
 to . So it is enough to give an injection from  to . 


Let    be a function from  to  such that . Range of    is clearly 
. 


We will now prove that    is one-to-one. Let  and  be two distinct real numbers. WLOG assume 
that   . If  is rational, then , but . Hence, . Now, assume 
that  is irrational. Let  where  and , where 

. Since , then there must exists an  such that . Let  be the first 
integer where . Clearly, . Now consider the number .  is clearly a 
rational number, which is greater than  and lesser than  (as  must have non-zero digits after 

). Therefore, , but . Hence, .


Solution 3

We first give a bijection, say , from  to the set of infinite length binary strings, say . Let  be 
a subset of , then    , where   if , else .    is clearly a bijection. 
We will prove now that there cannot be a bijection between  and . This is sufficient because if 
there is a bijection between  and  and a bijection between  and , then there will 
also be a bijection between  and . 
 
Suppose there is a bijection between  and . Then elements of  can be listed out as , , , .

Now we create a new infinite length binary string  in the following manner. The th bit of , that 
is, , where  is the th bit of . Now  cannot be present in the sequence , , , . as 
it differs from every  string on the th bit.


Solution 4

Suppose the set of functions from  to  is finite. Then, there will be some  many different 
functions from  to , say  , ,   for some positive integer . Let    be a 

function defined as   . Clearly,    is different from all the s. 
Hence, a contradiction. 


Now suppose the set of functions from  to  is countably infinite. Then there will be a sequence 
 of functions , , ,  in which every function from  to  is present exactly once.


Now, construct a function   from  to  so that

                         ,  if   

                           ,  if   


This newly constructed function    is not in the sequence  as    differs from every   in  as 
. Hence, a contradiction.
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Solution 5

There is clearly a bijection from  to . By taking reciprocal of each element we 
can have a bijection, say , from  to .


Let  and . We can now give a bijection, say , from  to . 

If , then . Else, . We will prove now that    is a bijection.


  is one-to-one: Let  and  be two distinct elements. If both  and  are in ,  and 
. Since  is a bijection, . If both  and  are in ,  as 

 and . Now WLOG assume that  and . Then  , but 
. Hence, again  .


  is onto: Let  be an element in . If  is of the form , then . Otherwise, 
.


Solution 6

We will prove it using induction.

Basis Step: Let  be a poset, where . Then clearly the only element will be maximal 
element. 
Inductive Step: Let us assume that every poset of size less than  has a maximal element. Let  
be a poset, where . Pick any element  of . If  is a maximal element, we are done. If not, 
consider the set . Since  is not a maximal element  will be a non-empty set. Now, 
consider the poset . From inductive hypothesis,  has a maximal element, say . We can 
prove now that  is also a maximal element of . Suppose not, then there must be some 
element of  say  such that . But . This implies that . Hence,  should be a 
member of  and  cannot be a maximal element of . This is a contradiction.


Solution 7

There are  minutes in one day. Since flights are , from pigeonhole principle we can say 
that there must be at least two flights which take off within a minute.


Solution 8

Every number of  can be written as  as they do not have any factor more than . Let us 
create  pigeonholes each corresponding to three parities, i.e., (odd, odd, odd), (odd, odd, even), 
(odd, even, odd), (odd, even, even), etc. Now we assign every number from  to one of the 
pigeonholes if the parity of powers of  and  in the factorisation of that number matches with 
parities of pigeonholes. From pigeonhole principle, two numbers, say  and , will 
get the same pigeonhole. That means  and  are of same parity,  and  are of same parity, and 
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 and  are of same parity. This implies , , and , are integers. 
Hence, product of these numbers, i.e.,  is the square of the integer

.


Solution 9

Every subset of  can have the sum ranging from  (for subset ) to  (take the subset as 

). The total number of subsets of . Taking subsets as pigeons and 
sums as pigeonholes, we can say that at least two subsets, say  and , of  will have the same 
sum. If  and  are disjoint, we are done. Else, we can drop the common elements of  and , i.e.,  

 and  will be two disjoint subsets of  with the same sum. 

Solution 10

Consider any seating of  girls and  boys around a circular table. Let’s call a set of boys, say , 
sitting together a boy group if there is no proper superset of boys, say , of  such that  are also 
sitting together. Similarly, we define girl groups. It is easy to see that number of boy groups is equal 
to the number of girl groups as they are sitting around a circular table. (Without loss of generality, 
let’s pick any girl group as the first group of sequence  and start adding other groups (of boy’s and 
girl’s) in a clockwise order to . Suppose the , where  is a girl group,  is a 
boy group, and so on.  in  has to be a boy group, otherwise  and  will together form a girl 
group. This proves that  is even and the number of boy groups is equal to the number of girl 
groups.)


If there is boy group of size  or more, then we are done as some boy will have two boys his 
neighbours. If there is a girl group of size , then again we are done as that girl will have two boys 
her neighbours.


Now suppose both these conditions are false. That is, every boy group is of size at most  and every 
girl group is of size at least .  If all boy groups are of size at most , then there will be at least  
boy groups. If every girl group is of size at least , then there will be at most  girl groups. But this 
is a contradiction as number of girl groups is the same as the number of boy groups.


Solution 11

Take  subsequences of consecutive numbers:


	  

	  

	  

	     

	  


c1 c2 (a1 + a2)/2 (b1 + b2)/2 (c1 + c2)/2
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n

A1 = a1
A2 = a1 + a2
A3 = a1 + a2 + a3

……
An = a1 + a2 + … + an



Now take modulo of s with . If there is an  such that , then we are done. Otherwise, 
from pigeonhole principle there will be  and , where , such that . That implies, 

. Clearly,  is a subsequence of consecutive integers .


Solution 12

Let  be any number in . Then  can be written in the form of , where  and  is an odd 
number. Now, we can pick any  numbers from  and these will be our pigeons. Create  
pigeonholes corresponding to each odd number in . Put a pigeon, say ,  to the 
pigeonhole . From pigeonhole principle, we can say that there will be at least one pigeonhole, say 
, that contains two pigeons, say  and , such that . Clearly,  is divisible by 
. Hence, .
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